Receptor specific downregulation of cytokine signaling by autophosphorylation in the FERM domain of Jak2.
نویسندگان
چکیده
The tyrosine kinase, Janus kinase-2 (Jak2), plays a pivotal role in signal transduction through a variety of cytokine receptors, including the receptor for erythropoietin (Epo). Although the physiological relevance of Jak2 has been definitively established, less is known about its regulation. In studies assessing the roles of sites of tyrosine phosphorylation, we identified Y(119) in the FERM (band 4.1, Ezrin, radixin and moesin) domain as a phosphorylation site. In these studies, we demonstrate that the phosphorylation of Y(119) in response to Epo downregulates Jak2 kinase activity. Using a phosphorylation mimic mutation (Y(119)E), downregulation is shown to involve dissociation of Jak2 from the receptor complex. Conversely, a Y(119)F mutant is more stably associated with the receptor complex. Thus, in cytokine responses, ligand binding induces activation of receptor associated Jak2, autophosphorylation of Y(119) in the FERM domain and the subsequent dissociation of the activated Jak2 from the receptor and degradation. This regulation occurs with the receptors for Epo, thrombopoietin and growth hormone but not with the receptor for interferon-gamma.
منابع مشابه
Jak2 FERM domain interaction with the erythropoietin receptor regulates Jak2 kinase activity.
Janus kinases are essential for signal transduction by a variety of cytokine receptors and when inappropriately activated can cause hematopoietic disorders and oncogenesis. Consequently, it can be predicted that the interaction of the kinases with receptors and the events required for activation are highly controlled. In a screen to identify phosphorylation events regulating Jak2 activity in Ep...
متن کاملCrystal Structure of the FERM-SH2 Module of Human Jak2
Jak-family tyrosine kinases mediate signaling from diverse cytokine receptors. Binding of Jaks to their cognate receptors is mediated by their N-terminal region, which contains FERM and SH2 domains. Here we describe the crystal structure of the FERM-SH2 region of Jak2 at 3.0Å resolution. The structure reveals that these domains and their flanking linker segments interact intimately to form an i...
متن کاملA regulating role of the JAK2 FERM domain in hyperactivation of JAK2(V617F).
JAK2 (Janus tyrosine kinase 2) is important for signalling through many cytokine receptors, and a gain-of-function JAK2 mutation in its pseudokinase domain, V617F, has been implicated in Philadelphia chromosome-negative myeloproliferative neoplasms. How this mutation hyperactivates JAK2 is poorly understood. In the present paper we report our findings that the V617F mutation has little effect o...
متن کاملCharacterization of a peptide inhibitor of Janus kinase 2 that mimics suppressor of cytokine signaling 1 function.
Positive and negative regulation of cytokines such as IFN-gamma are key to normal homeostatic function. Negative regulation of IFN-gamma in cells occurs via proteins called suppressors of cytokine signaling (SOCS)1 and -3. SOCS-1 inhibits IFN-gamma function by binding to the autophosphorylation site of the tyrosine kinase Janus kinase (JAK)2. We have developed a short 12-mer peptide, WLVFFVIFYF...
متن کاملActivation and functional analysis of Janus kinase 2 in BA/F3 cells using the coumermycin/gyrase B system.
Janus kinase 2 (Jak2) protein tyrosine kinase plays an important role in interleukin-3- or granulocyte-macrophage colony-stimulating factor-mediated signal transduction pathways leading to cell proliferation, activation of early response genes, and inhibition of apoptosis. However, it is unclear whether Jak2 can activate these signaling pathways directly without the involvement of cytokine rece...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 25 20 شماره
صفحات -
تاریخ انتشار 2006